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Abstract—In this paper, we present an adaptive anisotropic
diffusion (AD) method for the speckle filtering of polarimetric
synthetic aperture radar (PolSAR) images. One of the main in-
novations of our work is that we employ a likelihood-ratio test
method to measure the equality of two polarimetric covariance
matrices to control the diffusivity, and thus consider the full
polarimetric information and the statistical traits of PolSAR data
in the diffusion process. Meanwhile, to overcome the drawback of
the conventional AD methods, we integrate the local homogeneity
information into the diffusion model to adaptively control the
generosity of the filtering. Experiments were conducted on a simu-
lated image and two airborne PolSAR images to illustrate the
filtering performance, and the results show that the proposed
method effectively reduces speckle, retains edges, and targets, and
preserves the polarimetric scattering mechanisms.

Index Terms—Anisotropic diffusion (AD), polarimetric synthetic
aperture radar (PolSAR), speckle filtering.

I. INTRODUCTION

S YNTHETIC aperture radar (SAR) systems have the capa-
bility to provide images of the earth in both day and night,

and for almost all weather conditions. Polarimetric synthetic
aperture radar (PolSAR) is an advanced form of SAR, which
focuses on emitting and receiving fully polarized radar waves to
characterize observed land targets. Compared with optical re-
mote sensing data, PolSAR data have unique advantages in
obtaining land-use and land-cover information. However,
PolSAR data are inherently affected by speckle noise. The
presence of speckle complicates the image interpretation and
analysis, and reduces the effectiveness of target detection and
classification [1]. Despeckling is, therefore, an essential proce-
dure before using PolSAR images to obtain land information.

Speckle noise not only appears in the intensity image of each
polarization, but also in the complex cross-product terms. It has
been found that the diagonal terms of the polarimetric covariance
matrix can be characterized by a multiplicative noise model,

while the off-diagonal terms have the characteristics of a com-
binedmultiplicative and additive noise model [2]. This all makes
the speckle reduction problem more complicated for PolSAR
data than for single-polarization SAR data. In 1993, Novak and
Burl [3] derived the polarimetric whitening filter (PWF) by
optimally combining all the elements of the covariance matrix
to reduce the speckle of amplitude images, and the off-diagonal
terms of the covariance matrix were not filtered in the PWF filter.
Lee et al. [4] proposed another algorithm to produce speckle
reduced amplitude images, by using amultiplicative noise model
andminimizing themean square error.Goze et al. [5] generalized
this filter to include all the terms of the covariance matrix.
However, all of these filters introduced cross talk between
polarization channels and did not well preserve the polarimetric
properties [6].

To solve the above problems that the early algorithms en-
countered, Lee has done some remarkable researches on PolSAR
speckle reduction [1], [8], [10]. In 1999, Lee developed the edge-
aligned window technique and expanded his linear minimum
mean-squared error (LMMSE) estimator in [7] to filter PolSAR
data [1]. Lee’s method was termed the refined Lee PolSAR filter.
The refined Lee filter opened an important branch of filtering
methods based on the LMMSE estimator. In [8], a novel method
was proposed by Lee et al. to select neighboring pixels based on
the same polarimetric scattering characteristics, and the selected
pixels were used to filter the processed pixel by the LMMSE
estimator. In [9], the pixels in the LMMSE estimator were
selected by a technique of region growing, which is based on
the intensity similarity of the polarimetric coherency matrices.
Other LMMSE-based methods can be found in [10] and [11]. In
addition to the methods based on LMMSE, some other filtering
theories which were first developed for digital image denoising
have also been extended to PolSAR image despeckling, includ-
ing methods based on simulated annealing [12], nonlocal-means
[13], and bilateral filtering [14].

Nonlinear anisotropic diffusion (AD) is a partial differential
equation (PDE)-based filtering technique, which was the first
proposed by Perona and Malik (PM model) in 1987 [16]. This
method can effectively reduce the image noise and can simulta-
neously enhance important image features such as edges. In the
last decade, the theory of AD has been widely extended to the
filtering of SAR intensity images [17], [18]. However, to date,
studies on PolSAR image despeckling by AD are lacking. To
investigate the effectiveness of AD in filtering PolSAR data, we
present a new AD-based filter for PolSAR image despeckling. It
should be noted that, after the development of our algorithm, we
became aware of an independent work studied by Sun et al. [15]
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that focuses on PolSAR speckle reduction via AD. However, our
proposed method differs from the method in [15] in several
important points. 1) First and foremost, differing from the
method presented in [15], which only utilizes the intensity
information to control the diffusivity and does not effectively
take into account the statistical property of the speckle, the
proposed method employs a likelihood-ratio test statistic to
measure the equality of two polarimetric covariance matrices
to calculate the diffusion coefficients, and thus considers the full
polarimetric information and the statistical traits of the PolSAR
data in the diffusion process. 2) In this research, we utilize the
traits of the multiplicative speckle noise to obtain a local homo-
geneity index ( ), and we use this to adaptively control the
generosity of the diffusion, with the aim being to prevent the
smearing of fuzzy structures that occurs in the conventional
diffusion-based method. 3) Compared with the method of Sun
et al. [15], which has several parameters that need to be chosen,
the diffusion time is the only parameter that needs to be tuned
in the proposed AD model, which ensures the algorithm’s
efficiency and practicality.

The remainder of this paper is organized as follows. In
Section II, we describe the basic principles of filtering PolSAR
data. In Section III, the properties of nonlinear AD are analyzed,
and the proposed filtering method is presented. The filtering
results for a simulated image and two real PolSAR images are
then reported in Section IV. Finally, the conclusion is drawn in
Section V.

II. FILTERING PRINCIPLES OF POLSAR DATA

Polarimetric radarmeasures the complex scatteringmatrix of a
medium with quad polarizations. Single-look PolSAR data are
characterized by the scattering matrix

where is the scattering element of horizontal transmitting
and vertical receiving polarization with the combination of the
amplitude and the phase , and
the other elements are similarly defined. For the reciprocal
backscattering case, . The backscattered radar
signal from each resolution cell is characterized by the tridimen-
sional target vector , where is
the transposition operator. The span (or total power) is

. Single-look polarimetric
data can also be represented by a polarimetric covariance matrix,

which is generated from the outer product of the associated target
vector with its conjugate transpose , as shown at the
bottom of the page.

SAR data are frequently multilook processed for speckle
reduction and data compression by averaging several neighbor-
ing one-look pixels as shown at the bottom of the page, where the
superscript denotes the complex conjugate and denotes the
number of looks. The polarimetric covariance matrix is a
Hermitian positive definite matrix. It has been found that, for
fully developed speckle, the -look covariance matrix fol-
lows a complex Wishart distribution [19]

with

where and are, respectively, the trace and the determi-
nant operators, and denotes the population covariancematrix.

The PolSAR speckle noise model is quite complicated. It is
well known that the intensity (i.e., the diagonal elements of the
polarimetric covariance matrix ) can be characterized by a
multiplicative noise model [20]. An important trait of this
multiplicative noise is that the ratio of the intensity’s standard
deviation to the mean [or coefficient of variation ( )] is a
constant for a given number of looks

where is the number of looks. In 2003, López-Martínez and
Fabregas [2] found that the off-diagonal terms of are influ-
enced by multiplicative noise and two different additive noise
terms. After determining this model of PolSAR speckle noise,
López-Martínez proposed an algorithm that filters each off-
diagonal term separately from the diagonal terms, based on the
off-diagonal termmodel [21]. Lee et al. [1], however, argued that
filtering the off-diagonal terms separately could introduce arti-
facts, and that some of the early algorithms, which exploit the
statistical correlations between the , , and polariza-
tions, could introduce crosstalk between the polarization chan-
nels. They suggested that several basic principles should be
followed when filtering PolSAR data [1], which have since been
widely adopted by scholars: 1) to avoid crosstalk between the
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polarization channels, each element of the covariance matrix
should be filtered independently; and 2) to preserve the polari-
metric properties, each term of should be filtered in a manner
similar to multilook processing by averaging the covariance
matrices of neighboring pixels, i.e., all the terms of the covari-
ance matrix should be filtered by the same amount (or filtered
equally).

III. PROPOSED ADAPTIVE ANISOTROPIC DIFFUSIVE FILTER
FOR POLSAR DATA

A. PM Model of AD

The basic idea behind AD, as proposed by Perona and Malik
[16], is to evolve from an original image , which is
defined in a convex domain . A family of increas-
ingly smooth images is then derived from the solution
of the following PDE:

where is the gradient operator, is the divergence operator,
and denotes the magnitude. is the diffusion coefficient.
A four-neighborhood discrete form of (7) is given by

where is the set of the four neighborhoods of pixel ,
denotes a neighborhood of , and

is the image gradient at current time . The above
equation is recursive over time until it meets the stopping
criterion. Perona and Malik suggested that a desirable diffusion
coefficient should satisfy the basic condition that it diffuses more
in smooth areas and less around high-intensity transitions, so that
noise or unwanted texture are smoothed, while edges are sharp-
ened. They put forward two such diffusion coefficients

and

where is an edge magnitude parameter. In most of the conven-
tional AD methods, is obtained by the “noise estimator”
suggested by Canny [22]: at each iteration, a histogram of
the absolute values of the gradient throughout the image is
computed, and is set to be equal to the 90% value of its
integral. It has been found that there are no significant differences
in the filtering results when using these two different diffusion
coefficients. In this paper, we use the diffusion coefficient
of (10) for all the applications.

We define as the diffusion coefficient and as the absolute
value of the gradient, and the relationship between them is

plotted in Fig. 1. The basic properties of AD are formulated as
follows.

1) The range of is [0, 1]. For any given parameter ,
monotonically decreases with . If , then ,
which is isotropic diffusion (Gaussian filtering); if

, , the diffusion flow is arrested and the
edges are preserved.

2) For any given , G monotonically increases with param-
eter , which means that controls the generosity of the
anisotropic diffusive filter. For a higher value of , the
diffusion process is more likely to smooth the image and
reduce the noise; while for a lower value of , the diffusion
process is more restricted and is more likely to preserve
image features.

B. Proposed Adaptive PolSAR AD Model

Based on the aforementioned PolSAR filtering principles
and the discrete scheme of the PM model, the proposed AD
model for PolSAR filtering is formulated as follows:

where denotes the polarimetric covariance matrix of
pixel , is the set of the four neighborhoods of pixel ,

denotes the PolSAR image gradient, and the same
diffusion coefficient is used to filter each term of
independently and equally.

1) Calculation of the PolSAR Image Gradients: Two
important issues should be concerned when applying the PM
model to PolSAR despeckling. The first issue is the
aforementioned PolSAR filtering principle. On the basis of
this principle, the other issue is how to define the PolSAR
image gradients and obtain robust and precise diffusion
coefficients. In [15], Sun et al. only utilized the total intensity
information to calculate the diffusion coefficients and to control
the diffusivity, which is defined by us as “intensity-driven AD”
(IDAD) in this paper. The shortcoming of this method, however,
is that it could lead to two problems.

1) Polarimetric radar systems not only receive the amplitude
of the backscattered waves but also receive the phase
information of each polarization, which are both useful

Fig. 1. Relationship between the diffusion coefficient and the absolute value of
the gradient.
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to discriminate land objects. If only the amplitude or
intensity is used to control the diffusion process, the
boundaries between different classes of object might be
blurred, especially for those objects which have similar
intensity information but have quite different phase infor-
mation. To visualize this problem,we list a simple example
in Fig. 2. As can be seen, in the Pauli RGB image, the edges
and boundaries are quite visible between two classes of
objects in the blue ellipses, which implies that these objects
have totally different polarimetric information;while in the
span image, these objects are very similar in intensity (low-
intensity gradients on the boundaries). In such a case, if
only the intensity gradients are used, diffusion could take
place on their boundaries, and the edges might be blurred.
How to use the full polarimetric information in the calcu-
lation of the gradients is, therefore, an important issue
when applying AD to filter PolSAR images.

2) PM algorithm was first developed in the additive white
Gaussian noise (AWGN) hypothesis. In the AWGN set-
ting, a smaller Euclidean distance corresponds to a higher
likelihood that the two signal pixels (without noise) are
equal. Nevertheless, for SAR intensity image, which is
affected by speckle noise (follows a negative exponential
distribution), the simple Euclidean distance loses its sig-
nificance, and one needs a different similarity measure in
order to keep identifying the signal pixels that are more
likely to be equal to the reference one. However, the simple
Euclidean distance is used in [15] to calculate the gradients
in the intensity image, and then the diffusion coefficients
are derived from it, which might not be appropriate.

It is, therefore, important to take into account the full polari-
metric information and the statistical property of the PolSAR
data in the diffusion process when applying the PM algorithm to
PolSAR filtering. In this research, we deploy a likelihood-ratio
test method to measure the equality of two covariance matrices,
and regard this equality between a pixel and its neighborhood as
the PolSAR image gradient. This likelihood-ratio test method
was first proposed by Conradsen et al. [23]. We assume that the
independent Hermitian positive definite matrices (covari-
ance matrices) and are complex Wishart distributed, i.e.,

with and

with , where , which is the number of looks.

Then, their sum also follows a complex Wishart distribution:

, with .

Consider the null hypothesis : , which states that

the twomatrices are equal, against the alternative hypothesis :
.

If is true, the likelihood-ratio test statistic can be derived as

The logarithm of the likelihood-ratio test statistic is

Since all the pixels in the same image have the same number of
looks , the above equality measurement can be simplified as

In this paper, we regard the between two neighboring
pixels as the image gradient. Details of the aforementioned
derivation can be found in [23] and [13]. It can be verified that

when the two complex Wishart distributions are the
same; otherwise, < . satisfies the basic condition of
constructing the diffusion coefficient in (10): monotonically
decreases with . In homogeneous areas with polarimetric
and physically similar pixels (follow a similar complex Wishart
distribution), the likelihood-ratios between pixels are close
to zero and the diffusion coefficients are close to one, which is
isotropic diffusion (Gaussian filtering). In such a case, the
speckle is reduced; otherwise, the diffusion flow is arrested, and
the edges and features are preserved. Since is obtained by
the likelihood-ratio test between two covariance matrices, and it
is based on the complex Wishart distribution, the full polarimet-
ric information, and statistical traits of the PolSAR data are
utilized in the diffusion process, rather than simply using the
intensity information.

2) Adaptive PolSAR AD by the Integration of Local
Homogeneity Information: Once the image gradient is
obtained, the PolSAR PM AD model can be derived as

The PM AD model has shown outstanding filtering
performances, and there have been extensive researches into
how to improve this method further. One perspective is that the
conventional AD methods are gradient-dependent: the degree of
diffusive smoothing in these methods is controlled by the image
gradient information, and an alternative method for determining
the significant information in an image may be to consider the
local region homogeneity. Integrating this kind of local infor-
mation into the AD model could improve its performance. In
[24], Parker and Schnable suggested multiplying the diffusion
coefficient by a local heterogeneity index, called approximate
entropy.Othermethods that use ameasure of local information to
control the diffusion can be found in [25] and [26].

Furthermore, some other researchers have argued that a
troubling property of AD is its implicit use of a unique threshold
on the luminance gradient [i.e., the edge magnitude parameter

Fig. 2. Example showing the problem with IDAD. (a) Pauli RGB image of a
PolSAR data set. (b) The span image of (a).
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in (10)] [27]. As pointed out by Saha andUdupa [28], the PMAD
model is a very useful approach, an important drawback of this
method, however, is that it does not use any morphological or
structural information to control the extent of the diffusion in
different regions. In the original AD method, the flow across
object boundaries is reduced due to the high image gradients at
boundaries. However, the image gradients on fuzzy boundaries
are often not high enough to arrest the flow. As a result, fine
structures and boundaries are often blurred after filtering. As
mentioned before, the parameter in the diffusion coefficient
controls the generosity of the anisotropic diffusive smoothing.
When is large, the generosity of filtering is high, and the noise
can be reduced, but it would be more likely to blur edges. On the
other hand, when is small, the generosity of filtering is low, and
the edges can be preserved, but more noise would survive after
filtering. In the conventional AD methods, is fixed for each
region in an iteration, and adaptive control of is lacking. Saha
and Udupa [28] suggested that taking a fine control of to
adaptively determine the generosity of diffusion for each region
could alleviate the problem of blurring fine edges. They argued
that it is better to use a restricted parameter for filtering in
heterogeneous regions (structures and the vicinity of boundaries)
and to use a generous filtering parameter in homogeneous
regions.

Inspired by the above researches, to improve our PolSAR AD
method, we also employ a strategy to integrate the local homo-
geneity information into the diffusion model, and to adaptively
control the generosity of the filtering. As we stressed before, an
important trait of the multiplicative noise of SAR images is that
the intensity’s coefficient of variation in homogeneous areas is
close to a constant, for a given number of looks. Therefore, we
can utilize this trait to obtain the local homogeneity information
of a pixel. In this paper, we define the as

where is the intensity’s coefficient of variation in homoge-
neous areas, as obtained by (6), is the coefficient of
variation of a pixel’s neighboring window, and the
values are obtained in the original speckled image (before
evolving the image). The range of is [0, 1] (some values
in homogeneous areas might be upon 1, and we set them to 1 to
ensure the stability of our model). For pixels located in homo-
geneous areas, their values will be close to 1; while for

edges or pixels located in the vicinity of boundaries, their
values are much lower than 1. To visualize the effectiveness of

in depicting local homogeneity, we present the map
of a four-look simulated image (Fig. 3). This simulated image
was generated by the method proposed in [29]. As we can see,
the edges, boundaries, and point targets are all successfully
“detected” in the map.

Once the values are obtained before the evolution, we
can then replace the parameter at each iteration (often estimated
by the Canny “noise estimator”) with a local homogeneity
controlled parameter

By doing so, the proposed method is able to affect a restricted
diffusion around edges and in the vicinity of boundaries, and
allows a generous diffusion in the interior of homogeneous
regions. Finally, a four-neighborhood discrete form of the adap-
tive PolSAR AD (APAD) model is given by

where denotes the covariance matrix of pixel at
time , is the set of the neighborhoods of pixel , and

is the equality between pixel and its neighbor-
hood (i.e., the PolSAR image gradient of pixel ). To
conclude the proposedmethod, we summarize its steps by Fig. 4.
First, initialize as 0.05 and set the time of the diffusion, and
calculate the values by (16). Then, in each iteration,
calculate the gradients by the likelihood-ratio test statistic of
(14) and obtain the parameter by the Canny “noise estimator,”
and evolve the image by (18). Finally, output the filtering result if
the iteration time is reached. In the proposed method, the total
diffusion time is the only parameter that needs to be tuned,
which makes the method more applicable and efficient. In fact,
we found that in most cases, the filtering results are quite

Fig. 3. Experiment to show the effectiveness of in depicting local homo-
geneity. (a) The simulated image. (b) The corresponding map.

Fig. 4. Framework of the proposed adaptive PolSAR AD method.
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effective when is set as 20. Of course, in practice, we still need
to test if a larger value of can improve the results. Furthermore,
to avoid over-smoothing and unnecessary computation, we
also deploy another stopping criterion: the diffusion is stopped
automaticallywhen the residual error, defined as themean square
error of the span images between two iterations, is less than a
threshold ( is set as 0.01 dB in our method).

IV. EXPERIMENTAL RESULTS OF POLSAR SPECKLE FILTERING

In this section, to investigate the filtering performance of the
APAD filter presented in Section III, the results obtained with a
simulated PolSAR image and two real PolSAR images (Table I)
are reported. Two filters are also implemented for comparison
purposes: the IDAD filter proposed by Sun et al. [15] and the
refined Lee filter [1].

A. Experiments With a Simulated PolSAR Image

An experiment was conducted on a four-look simulated
PolSAR image to assess the performance of speckle reduction.
First, to illustrate the effect of integrating the into our
method, we present the filtering results of the proposed PolSAR
ADwith andwithout the .As can be seen in Fig. 5(f) and (g),
on the one hand, the speckle reduction in the images filtered by
both methods is quite similar. This is because, in homogeneous
areas, the values are close to 1, and thus , and the two
methods have similar generosity of filtering. On the other hand,
some edges and point targets are smeared if is not consid-
ered. However, the proposed APAD method does not encounter
the above problem because we use the local homogeneity
information to affect a restricted diffusion around the edges and
point targets.

Fig. 5 also shows the filtering results of the refined Lee filter
and IDAD filter. As can be observed in Fig. 5(d), the refined Lee
filter shows a positive filtering performance: the speckle is
reduced to some degree, and the edges and point signatures are
preserved. Compare with the refined Lee filter, IDAD shows a
much better speckle reduction performance [Fig. 5(e)], but the
boundaries of the triangle and the ellipse are slightly blurred. The
reason for this problem might be that the gradients of intensity
between these two objects and the background are quite low
[Fig. 5(c)], and diffusion has taken place on the boundaries since
only intensity is taken into account. However, it should be noted
that IDAD shows a better performance in retaining the isolated
point targets than the PolSAR AD without considering
[Fig. 5(f)]. This may be because that the presence of noise,
especially when the gradient generated by noise is comparable to
that by image features, might drive the diffusion process to
undesirable results [16], [30]. In IDAD, a Gaussian smoothing
operation is implemented on the span image before each iteration

[15], which alleviates the above problem to some degree and
leads to the better preservation of point targets than for PolSAR
AD without . Compared with the refined Lee filter and
IDAD, the filtering result of the proposed APAD is desirable
[Fig. 5(j)]: the speckle noise is effectively reduced, and the edges
and point targets are effectively preserved.

In order to objectively assess the effectiveness of the speckle
suppression of each method, three quantitative indices are
introduced: the peak signal-to-noise ratio (PSNR), the equiva-
lent number of looks (ENL) and the structural similarity (SSIM)
index. PSNR is ametric that measures the quality of a processed
image, compared with the noise-free image. A high value of
PSNR represents a high image quality; ENL is an indicator that
is widely used to indicate the speckle noise level of SAR
images. A high value of ENL represents a low level of speckle
noise; A high SSIM value indicates better preservation of the
edges and details. All three of these indices are calculated in the
span image. This is because the span image is a weighted
average of the , , and intensities, andmany features
that may appear differently in each polarization channel will
show up in the span image. One can observe in Table II that
IDAD and APAD are much more efficient than the refined Lee
filter in speckle reduction. For the PSNR and the SSIM, APAD
shows the best filtering performance among the three methods.
For the ENL, IDAD gets a slightly higher value than APAD,
which is because the image filtered by IDAD is somewhat
over smoothed.

TABLE I
BASIC PARAMETERS OF THE REAL POLSAR DATA SETS

Fig. 5. Comparisonof thefilteringperformanceswith a simulated image. (a)Pauli
RGB image of the noise-free data. (b) Four-look speckled image. (c) Span image
of (b). (d) The refined Lee filter shows a positive performance in reducing speckle
and retaining edges. (e) IDAD shows an outstanding performance in speckle
reduction, but the boundaries of the triangle and the ellipse are slightly blurred.
(f) Filtering results of PolSAR AD without considering . (g) The filtering
results of adaptive PolSAR AD.
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B. Experiments With Two Real PolSAR Images

Compared with simulated images, real PolSAR images have
much more complicated scenes, and they are often used to
inspect the filtering performance of retaining edges and preserv-
ing polarimetric scattering mechanisms. It has been recognized
that the polarimetric scattering mechanisms are quite useful in
land-use classification and scene interpretation, and a good
PolSAR speckle filtering method should possess the trait of
preserving this important polarimetric information. In the last
two decades, “target decomposition theorems” have been widely
investigated to depict the scattering mechanisms of SAR signals.
Among them, the Freeman and Durden decomposition [31]
and the H/A/alpha decomposition [32] are two of the most
important theorems.

1) Experiments With the San Francisco Data Set: The San
Francisco data set was acquired by the AIRSAR project of the
National Aeronautics and Space Administration/Jet Propulsion
Laboratory, and was processed by the European Space Agency
as a four-look data set. This data set has been widely used in the
study of the polarimetric scattering mechanisms, and contains
several classes of typical land objects that have different scat-
tering mechanisms. In [31], Freeman and Durden developed a
scattering model-based decomposition to characterize the domi-
nant scattering mechanism of pixels. In this decomposition
model, the scattering characteristics are decomposed into
three basic scattering mechanisms: surface (or odd) scattering,
double-bounce scattering, and volume scattering. The dominant
scattering category of a pixel is determined by its highest power
among the three scattering components. To illustrate the
proposed method’s ability to preserve the dominant scattering
mechanism, Freeman and Durden decomposition was under-
taken on a subset of the San Francisco image ( pixels)
filtered by the different methods (Fig. 6). The images are
displayed using magnitudes of surface scattering (blue),
double-bounce scattering (red), and volume scattering (green).

As can be seen, the image filtered by the refined Lee filter
shows the problems of a scalloped appearance and a block effect
[Fig. 6(b)], which is due to the use of the edge-aligned windows.
Furthermore, many of the fine edges are not well retained in the
refined Lee filtered image. Compared with the refined Lee filter,
IDAD reveals better filtering traits in both speckle reduction and
edge retaining. Both of the above two methods have, however,
smeared some of the strong point signatures (for example,
buildings in the forest area and ships on the sea), and have lost
some detailed polarimetric information in the urban area. This is
attributed to the fact that both the refined Lee filter and IDAD are
the intensity-driven filters and they do not utilize the phase
information: for the refined Lee filter, the homogeneous pixels

are selected based on the edge-aligned window obtained in the
span image; for IDAD, the gradients are calculated in the span
image. The improvement in the APAD-filtered data is evident:
the speckle noise is effectively reduced (Table II), the details and
spatial resolution are retained, and the dominant scattering
mechanism is well preserved [Fig. 6(d)].

The retention of strong returns from point targets is essential
for target and man-made structure detection, and to preserve the
original polarimetric signatures and properties of these targets is,
therefore, important for some applications. In certain PolSAR
filtering algorithms [8], [10], isolated point targets are detected
and are kept unfiltered. Although, in the proposed method, no
special strategies are deployed to detect and retain these targets,
we undertook an experiment to show that the proposedmethod is
able to preserve their original polarimetric properties. We chose
three point target pixels in the filtered images, and we plot the
magnitudes of their three basic scattering mechanisms in Fig. 7.
Meanwhile, to quantitatively evaluate the preservation of point
targets, we have also calculated the sum of the deviation (SD) of
the magnitudes between a speckled pixel and a filtered pixel

where the superscript denotes pixel P1 to P3. , , and are
the magnitudes of odd, double, and volume scattering of the
original pixel, respectively; and , , and are the magni-
tudes of odd, double, and volume scattering of the filtered pixel,
respectively. Here, it can be easily seen that, among the three
methods, the magnitudes of the APAD-filtered point targets are
mostly in line with their original states [Fig. 7(e)], which

TABLE II
PSNR AND ENL OF THE IMAGES FILTERED BY THE DIFFERENT METHODS

Fig. 6. Comparison of the filtering results with the San Francisco image.
(a) Freeman RGB image of the original data. (b) The result of the refined Lee
filter, which results in a block effect and blurred edges. (c) The result of IDAD
shows a betterfiltering performance than the refinedLeefilter. (d) The result of the
proposed method effectively reduces speckle, preserves the dominant scattering
properties, and retains the details.
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confirms the proposed method’s ability to preserve the original
scatteringmechanisms of point targets. Both the refined Lee filter
and IDAD distort the scattering mechanisms of the point targets
to some degree. For the refined Lee filtered data in particular, the
dominant scattering category of P3, whichwas originally volume
scattering, changes to odd scattering [Fig. 7(c)].

To further validate that the proposedmethod is able to preserve
the scattering properties of point targets, we plot the polarimetric
signatures of pixel P3 filtered by the different methods. The
polarimetric signatures, introduced by Van Zyl [33], plot the
normalized copolarization or cross-polarization power density
when exploring all the polarization space, which can show the
amount of power that will be received from a given scatterer for
any polarization. Fig. 8 shows the copolarization polarimetric
signatures of P3. As can be observed, a close agreement is
reached between the signatures from the original pixel and the
pixel filtered by APAD [Fig. 8(d)], while distinct disagreements
arise for the pixels filtered by the refined Lee filter and IDAD.
This experiment once again indicates the superiority of APAD in
preserving the original polarimetric scattering signatures of point
targets. Figs. 7 and 8 imply that APAD effectively arrests the
diffusion around the strong point targets, thereby preserving their
original polarimetric information. In contrast, both the refined
Lee filter and IDAD result in the smearing of the point target
signatures.

2) Experiments With Haikou Data Set: The second real image
used for illustration is the Haikou image, which was obtained
from a X-band airborne sensor. Fig. 9 shows the filtering results
of the different methods on a subset of the Haikou image
( pixels). As expected, the refined Lee filter shows
a block effect and blurs the edges [Fig. 9(b)]. IDAD shows
an improvement in speckle reduction (Table II) and edge

preservation, compared with the refined Lee filter (marked by
red rectangles). The proposedmethod again shows its outstanding
filtering traits of reducing speckle and retaining details, especially
for the point targets [Fig. 9(d)].

H/A/alpha decomposition, which is based on an eigenvalue
analysis of the polarimetric coherency matrix, was proposed
by Cloude and Pottier [32]. In this decomposition model,
the polarimetric scattering entropy (H) is an index used to
describe the degree of statistical disorder of each distinct scatter
type within the ensemble (i.e., the randomness of the scattering).
The polarimetric scattering anisotropy (A) measures the relative
importance of the second and the third eigenvalues of the eigen

Fig. 7. Comparison of the preservation of point target signatures. (a) A subset of
the San Francisco image with the selected point targets marked by red rectangles.
(b)–(e) The magnitudes of the three basic scattering mechanisms of point targets
in the original image and in the imagesfiltered by the refinedLeefilter, IDAD, and
APAD, respectively.

Fig. 8. Comparison of the copolarization signatures of a point target. (a) The
original copolarization signatures of P3. (b)–(d) The copolarization signatures of
P3 filtered by the refined Lee filter, IDAD, and APAD, respectively.

Fig. 9. Comparisonof thefiltering performanceswith theHaikou image. (a) Pauli
RGB image of the original subset. (b)–(d) The filtering results of the refined
Lee filter, IDAD, and APAD, respectively. (e)–(h) Detailed regions cropped
from (a) to (d).
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decomposition. Speckle filtering and other averaging processes
can affect the inherent scattering characteristics of each pixel.
The results of entropy and anisotropy, in particular, are depen-
dent on the averaging process. As pointed out in [8], in general,
the entropy value increases with the amount of averaging, but
the anisotropy decreases.

To illustrate the effect of filters on H and A, we plot the
scattergrams of the original and the filtered H and A values for
three classes [marked by green rectangles in Fig. 9(a)]. We can
see from Fig. 10 that H and A effectively describe the scattering
mechanisms of each class: for the airstrip pixels, their dominant
scatteringmechanism is odd scattering and there are low amounts
of the other scattering types, and hence they have low H values;
for the grass pixels, the randomness of their scattering mechan-
isms is high, and hence they have high H values; for the building
pixels, the backscattered signals mainly come from double-
bounce scattering, and hence they have lowHvalues. In addition,
since their second most dominant scattering mechanisms (odd
scattering) are of larger amounts than the third ones (volume
scattering), the buildings have high A values. It can be observed
that, generally speaking, the H values computed from the filtered
images increase and the A values computed from the filtered
images decrease. This is due to the averaging effect of the filters.
Furthermore,wecan see that thedistributions of theHandAvalues
are more concentrated and these four classes are more separable in
the data filtered by IDAD and APAD, which verifies that the
proposed method and IDAD perform better in speckle reduction
and enhancing the class separation than the refined Lee filter.

V. CONCLUSION

In this paper, we propose an adaptive AD method for the
speckle filtering of PolSAR images. A likelihood-ratio test
method is used to calculate the diffusion coefficient, and an LHI
is adopted to adaptively control the generosity of the diffusion.
Experiments were conducted on a simulated image and two real
PolSAR images, revealing the good filtering performance of the
proposed method in reducing speckle, retaining edges and
targets, and preserving the polarimetric scattering mechanisms.
It must be pointed out that, to utilize the full polarimetric

information in the AD model, we employ the likelihood-ratio
test statistic to measure the equality of two covariance matrices.
This test is based on the assumption that the covariance matrix
follows a complexWishart distribution, and it is only satisfied for
areas with fully developed speckle. However, for those scenes
with lots of details, such as urban areas in very high-resolution
PolSAR images, the equality measures derived from theWishart
PDF might not be appropriate, and more complicated statistical
models [34], [35] need to be considered. This is application and
problem oriented.
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